Modeling Heterogeneous Forecasting Strategies the Right Way

George A. Waters*
Department of Economics
Campus Box 4200
Illinois State University
Normal, IL 61761-4200

January 30, 2009

Abstract

The α-BNN dynamic retains the desirable features of the BNN dynamic without the lack of a continuous derivative that complicates the analysis of the cobweb model under the latter. Both dynamics satisfy positive correlation and inventiveness, and there is an intuitively appealing steady state where one strategy dominates, which is not possible with the multinomial logit dynamic. The stability of the steady state and 2-cycle are analyzed.

Keywords: Chaos, Cobweb Model, Learning, α-BNN

JEL codes: C62, C73, D83, D84

*gawater@ilstu.edu, phone: 309-438-7301, fax: 309-438-5228
While the assumption that there is a unique representative forecast is common in macroeconomics, researchers should recognize that changing forecasting strategies is quite possible and could an important determinant of economic dynamics. Much work in this area has focused on the cobweb model where the multinomial logit (MNL) dynamic describes switching between rational and naive forecasting strategies\footnote{Sethi and Franke (1994) develop the cobweb model with naive and rational forecasts. Brock and Hommes (1997) discuss the nature of the chaotic dynamics arising under MNL. Hommes (2006) surveys the succeeding literature.}. However, this dynamic and imitative dynamics such as the replicator are problematic when some strategies are at or close to extinction. Waters (2008) introduces the Brown, von Neumann and Nash (1950), henceforth BNN, dynamic in this context and shows that it does not have such problems and that there is a more natural interpretation of the steady states, compared to other dynamics. The major draw back of this approach is that the BNN dynamic does not have a continuous derivative where the payoffs are equal. Fortunately, the α-BNN dynamic, an extension suggested by Weibull (1994), is continuous in the payoff while retaining the desirable features of the BNN dynamics such as positive correlation, a weak monotonicity condition, and inventiveness, which means that strategies with no followers can gain some if they perform well.

Let $q_{k,t}$ be the fraction of followers and $\pi_{k,t}$ be the payoff of strategy k in time t. A general dynamic Φ_k describes the evolution of $q_{k,t}$ within the simplex $\tilde{q} = \{ (q_{1,t}, \ldots, q_{H,t}) \mid \sum_{h=1}^{H} q_{h,t} = 1 \}$ according to the vector of payoffs $\pi_t = (\pi_{1,t}, \ldots, \pi_{H,t})$ such that $q_{k,t+1} = \Phi_k (q_t, \pi_t)$ where $q_t \in \tilde{q}$. The population average payoff $\bar{\pi}_t = \frac{1}{H} \sum_{h=1}^{H} \pi_{h,t} \bar{\pi}_{h,t}$ determines the excess payoff $\hat{\pi}_{k,t} = \pi_{k,t} - \bar{\pi}_t$ for strategy k in time t. The discrete time formulation of positive correlation relates the excess payoffs and the change in population shares $\Delta q_{k,t} = q_{k,t+1} - q_{k,t}$.

The α–BNN dynamic depends on the positive excess payoffs in the population where the parameter $\alpha > 0$ represents the speed of adjustment of the fractions of followers of the different strategies.

\begin{equation}
q_{k,t+1} = \frac{q_{k,t} + [\hat{\pi}_{k,t}]^{\alpha}}{1 + \sum_{h=1}^{H} [\hat{\pi}_{h,t}]^{\alpha}},
\end{equation}

This dynamic is a special case of the class of excess payoff dynamics (Sandholm 2006), which satisfy positive correlation and inventiveness.

Definition 1 The dynamic Φ_k satisfies **positive correlation** iff $\sum_{h=1}^{H} \Delta q_{h,t} \pi_{h,t} > 0$ unless $\pi_{h,t} = 0$ for all h.

Positive correlation requires that the change of the fractions of the population using different strategies is correlated with their payoffs, so strategies with higher payoffs gain adherents on average, ensuring out-of-equilibrium dynamic paths reflect strategic incentives. Though this is the weakest monotonicity condition
in the literature, the multinomial logit models commonly used to describe switching between forecasting strategies does not satisfy positive correlation, see Waters (2009a).

Definition 2 The dynamic Φ_k satisfies inventiveness if strategies with positive excess payoff in time t have a positive fraction of followers in time $t+1$.

Inventiveness (Weibull 1994)) ensures that strategies needn’t be permanently extinct if they perform well, which is the case under imitative dynamics such as the replicator. Inspection shows that the α-BNN dynamic satisfies inventiveness.

The most common specification of the cobweb model with heterogeneous forecasting strategies allows producers to forecast output prices using either a rational or naive forecast. Let q be the fraction using the rational forecast, which is equivalent to perfect foresight in the absence of stochastic terms in the model. While the rational forecast is more accurate than the naive forecast, which simply uses the price in the previous period, the producer must pay a cost $C > 0$ to use it. With linear demand and supply determined by these two forecasting strategies, price dynamics are given by the following, where \hat{b} is the ratio of the supply elasticity b and the demand elasticity B.

$$p_{t+1} = -\left(\frac{\hat{b}(1 - q_t)}{b q_t + 1}\right) p_t.$$ \hfill (2)

The variable p_t is the deviation of the price from a positive steady state. Clearly, $p_t = 0$ is a steady state of (2), though there is also the possibility of a 2-cycle if the bracketed term equals one.

The dynamics of q_t governing the choice of forecasting strategy are given by the α-BNN dynamic (1), which depend on the excess payoffs for the rational and naive strategies $\hat{\pi}_{R,t}$ and $\hat{\pi}_{N,t}$. The payoffs to the two strategies are profits for the firms, taking into account the cost of the rational forecast. With two strategies, the excess payoffs take the following form.

$$\hat{\pi}_{R,t} = (1 - q_t) (\pi_{R,t} - \pi_{N,t})$$ \hfill (3)

$$\hat{\pi}_{N,t} = q_t (\pi_{N,t} - \pi_{R,t}).$$ \hfill (4)

The difference in the rational and naive payoffs $\pi_{R,t}$ and $\pi_{N,t}$ is important so we define the payoff difference function $\gamma(p_t, q_t) = \pi_{R,t} - \pi_{N,t}$. Computation (Waters 2008) yields the following expression for $\gamma(\cdot)$.\footnote{See Waters (2008) for a detailed development of the model. The equation for price dynamics and the payoffs are identical to those found in Brock and Hommes (1997).}
\[\gamma(p_t, q_t) = p_t^2 \left[\frac{B \hat{b} (\hat{b} + 1)}{2(bq_t + 1)^2} \right] - C \] (5)

The non-negativity restriction on excess payoffs in the \(\alpha \)-BNN dynamic (1) complicates the analysis, so we express the dynamics for \(q_t \) as follows.

\[
q_{t+1} = \begin{cases}
\frac{q_t}{1 - q_t \gamma(p_t, q_t)} & \text{for } \gamma(p_t, q_t) \leq 0 \\
\frac{1 - q_t}{1 + (1 - q_t) \gamma(p_t, q_t)} & \text{for } \gamma(p_t, q_t) > 0
\end{cases}
\] (6)

Whether \(q_t \) rises or falls depends on whether the payoff difference \(\gamma(p_t, q_t) \) is positive or negative. The function \(F \) describe the motion of \((p_t, q_t)\).

Definition 3 The evolution function \(F \) where \((p_{t+1}, q_{t+1}) = F(p_t, q_t)\) is determined by the price dynamics (2), and the evolution of \(q_t \) (6) along with the payoff difference function \(\gamma(p_t, q_t) \) in (5).

Now that the dynamics of the model are concisely described, first consider the existence of a steady state such that \((p_t, q_t) = F(p_t, q_t)\). As noted above, a zero price deviation is a steady state of the price dynamics equation (2). If \(p_t = 0 \), then \(\gamma(p_t, q_t) = -C \) meaning the naive forecast payoff dominates, so \((p_t, q_t) = (0, 0)\) is a steady state. The stability of this steady state is determined by the Jacobian of the evolution function evaluated at the origin. Intuitively, the relevant stability concept implies that if \((p_t, q_t)\) is sufficiently close to the steady state, then the path given by \(F \) will remain within a neighborhood of the steady state. See Lakshmikantham and Trigiante (2002) for a formal discussion of the stability of difference equations.

Proposition 4 The origin is a stable steady state of \(F \) for \(\hat{b} \leq 1 \) but is not stable for \(\hat{b} > 1 \).

Proof. The origin is a steady state of (2) and the \(\gamma(\cdot) \leq 0 \) case of (6) by inspection. The Jacobian for these two equations evaluated at the origin is \(J_{(0,0)} = \begin{pmatrix} -\hat{b} & 0 \\ 0 & 1 \end{pmatrix} \). If \(\hat{b} \leq 1 \), both eigenvalues of \(J_{(0,0)} \) are less than or equal to one, so the time path of \((p_t, q_t)\) will remain within a given neighborhood of the origin. However, if \(\hat{b} > 1 \), there is an eigenvalue larger than one and the origin is not stable. □

When the price remains close to the steady state, the naive forecasting strategy performs well and there is no reason for agents to incur the cost of the rational forecast, so the presence of a stable steady state at \((p_t, q_t) = (0, 0)\) is quite natural. There is an equivalent result in Branch and McGough (2005) using a modified replicator dynamic, though the model of Brock and Hommes (1997) using multinomial logit cannot have steady states where one strategy dominates.
Both models have a 2-cycle related to the one described next. To simplify the analysis, define the evolution function \hat{F} as follows exploiting the symmetry of F around the q-axis.

Definition 5 The evolution function \hat{F} where $(p_{t+1}, q_{t+1}) = \hat{F}(p_t, q_t)$ is determined by the price dynamics equation

$$p_{t+1} = \left[\frac{\hat{b}(1 - q_t)}{bq_t + 1}\right] p_t,$$

and the evolution of q_t (6) along with the payoff difference function $\gamma(p_t, q_t)$ in (5).

The dynamics of \hat{F} are identical to F with negative price deviations reflected to positive values, which is equivalent to the introduction of the T map in Brock and Hommes (1997, proof of Theorem 3.4). The 2-cycle of F may now be represented as a steady state of \hat{F}.

Proposition 6 For $\alpha \neq 1, \hat{b} > 1$, there exists a steady state of \hat{F} (2-cycle of F) given by $(p^*, q^*) = \left(\sqrt{\frac{C}{2b}}, \frac{\hat{b} - 1}{2\hat{b}}\right)$. The evolution function \hat{F} has a continuous derivative at (p^*, q^*), i.e. the Jacobians are identical for the cases of $\gamma(p_t, q_t) \leq 0$. The steady state (p^*, q^*) of \hat{F} is not stable.

Proof. The steady state requires that the bracketed term $[\cdot]$ in the price dynamics equation (7) must be one, which determines q^*. The payoff difference function $\gamma(p_t, q_t)$ must be zero given q^*, which determines p^*.

The stability analysis makes use of the Jacobian $\hat{J}_{(p^*, q^*)}$ of \hat{F} at its steady state $(p^*, q^*) = \left(\sqrt{\frac{C}{2b}}, \frac{\hat{b} - 1}{2\hat{b}}\right)$. Using the $\gamma(p_t, q_t) \leq 0$ case of the function for the evolution of q_t (6), the Jacobian is

$$\hat{J}_{(p^*, q^*)} = \begin{pmatrix} 1 & -\sqrt{\frac{2C}{b}} \left(\frac{2\hat{b}}{\hat{b} + 1}\right) \\ 0 & 1 \end{pmatrix}.$$

Furthermore, the Jacobian using the $\gamma(p_t, q_t) > 0$ case from (6) is identical. With ones on the diagonal of the upper triangular matrix \hat{J}, and a non-zero element off the diagonal imply that for any points off the $p-$ and $q-$ axes, time paths governed by \hat{F} move away from (p^*, q^*), so it is not stable. \[\blacksquare\]

That \hat{F} has a single Jacobian governing the neighborhood around (p^*, q^*) is the primary difference with the analysis of the case where $\alpha = 1$ in Waters (2009a). In that case there are distinct Jacobians for $\gamma(p_t, q_t) \leq 0$. In that case the steady state is exponentially unstable Waters (2009b), but we cannot make such a conclusion for $\alpha \neq 1$.

The simplicity of the result contrasts with other dynamics. Brock and Hommes (1997) shows that stability depends on the search intensity parameter in the multinomial logit dynamic. Branch and McGough
(2006) use a version of the replicator, but there is a discontinuity when the excess payoff is zero, so stability comparisons are difficult.

As mathematical analysis, the present work is not particularly sophisticated, but that is precisely the point. The α-BNN dynamic has desirable characteristics not found in other dynamics and avoids the difficulties that can arise from the lack of a global continuous derivative for $\alpha = 1$, see Waters (2009b).

The cobweb model with the α-BNN dynamic has chaotic dynamics in the presence of the 2-cycle described in Proposition 2. There are bifurcations in both the ratio of supply and demand elasticities \hat{b} and the speed of adjustment parameter α. For varying parameter choices there are both periodic and strange attractors\footnote{Waters (2009a) shows bifurcation figure for $\alpha = 1$ with a varying \hat{b}, and for $\hat{b} = 1$ with varying α. Results are similar for other choices of α and \hat{b}.} as in other studies. One novel aspect of the α-BNN dynamic is the behavior for large values of α. Unlike the MNL approach with high search intensity, the variables in the cobweb model show little variation for sufficiently large α.

The α-BNN dynamic has all of the positive attributes of the excess payoff dynamics with none of the difficulties arising from the lack of a continuous derivative found with the BNN dynamic. Excess payoff dynamics satisfy positive correlation and inventiveness and admit naturally interpretable steady states where one strategy dominates. The α-BNN dynamic has great promise for modeling the evolution of heterogeneous forecasting strategies.

References

Dynamics and Control, forthcoming.

Waters, G., 2009b. Instability in the Cobweb Model under the BNN dynamic. working paper.